Ubuntu Setup
0. Delete Ubuntu
- Run Diskpart
- win+R:
diskpart
- win+R:
- Check disk
list disk
- Select the disk saved system files of ubuntu
select disk disk_number
- Check partition
list partition
- Select the system partition
select partition 1
assign letter=p
- Run notepad as administrator
- Go to the disk p and delete the ubuntu folder
- Back to the Diskpart
romove letter=p
- Run Disk manager
- delete the disk volume of ubuntu storage.
1. Install Ubuntu
2. Install Anaconda3
2.1 Download
1
cd Downloads
1
bash Anaconda3-xxxx.xx-Linux-x86_64.sh
2.2 bashrc setting
1
nano ~/.bashrc
- export
1
export PATH="/home/username/anaconda3/bin:$PATH"
1
source ~/.bashrc
2.3 Command
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
conda create -n your_env_name python=X.X(3.6,3.7,etc.)
source activate your_env_name(env_name)
source deactivate your_env_name(env_name)
conda remove -n your_env_name(env_name) --all
conda list
conda install package_name(package_name)
conda install scrapy==1.3
conda install -n env_name package_name
#Check env
conda env list
#or
conda info -e
#or
conda info --envs
conda update conda
conda update anaconda
conda update --all
conda update python
2.4 put images source
3.Install Pycharm
4.ROS
- ROS2 - humble - ubuntu 22.04
- ROS1 - ubuntu 20.04
5.Install Nvidia driver
1
ubuntu-drivers devices
1
sudo apt-get install nvidia-driver-535
- hardware key
1
Enroll MOK
reboot
and check
1
nvidia-smi
6.CUDA
nano ~/.bashrc
1 2
export PATH=/usr/local/cuda-12.3/bin${PATH:+:${PATH}} export LD_LIBRARY_PATH=/usr/local/cuda-12.3/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
7.cuDNN
- Extract
1
cd ~/Downloads/cudnn-xxxxxxxxxxxxx`
- move
1
2
3
sudo cp include/cudnn*.h /usr/local/cuda/include
sudo cp -P lib/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn*
- Check
1
cat /usr/local/cuda-12.3/include/cudnn_version.h | grep CUDNN_MAJOR -A 2
8.Pytorch
https://pytorch.org/get-started/previous-versions/
- Check
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
>>import torch
>>print(torch.__version__)
>>print(torch.version.cuda)
>>print(torch.backends.cudnn.version())
>>torch.cuda.is_available()
>>torch.cuda.device_count()
>>torch.cuda.get_device_name(0)
>>torch.cuda.current_device()
9.Docker
Do not install docker-desktop!
This post is licensed under CC BY 4.0 by the author.