Linear Time-invariant System
State-space representation
\[\dot{x}(t)=Ax(t)+Bu(t)\] \[y(t)=Cx(t)+Du(t)\]Exponential of matrix
\[\dot{x}=ax \implies x=x(0)e^{at}\]where $a$ is a scale constant.
\[\dot{x}=Ax \implies x=x(0)e^{At}\]where $A$ is a matrix.
- Taylor expansions of exponential
- Taylor expansion of matrix exponential
Therefor, It‘s simple to get the derivative of matrix exponential
\[\frac{de^{At}}{dt}=0+A+\frac{2}{2!}A^{2}t+\frac{3}{3!}A^{3}t^{2}+\cdots=Ae^{At}\]Solution of State-Space Equations
Laplace transform
\[sX(s)-x(0)=AX(s)+BU(s)\] \[(sI-A)X(s)=x(0)+BU(s)\] \[X(s)=(sI-A)^{-1}x(0)+(sI-A)^{-1}BU(s)\]$e^{At}=L^{-1}\left[(sI-A)^{-1}\right]$
\[x(t)=L^{-1}[X(s)]=e^{At}x(0)+\int^{t}_{0}e^{A(t-\tau)}Bu(\tau)d\tau\]Convolution: $(f*g)(t)= L[f]\times L[g] =\int_{}f(\tau)\cdot g(t-\tau)d\tau$
Note that we can only get the solution when the initial time is 0 by using the differential properties of laplace.
Direct
- Let’s multiply both sides of the equation by $e^{-At}$
\[\implies \frac{d({e}^{-A t}x(t))}{dt}={e}^{-A t}Bu{(t)}\] \[\int_{t_0}^{t}\frac{d({e}^{-A\tau}x{(\tau)})}{d\tau} {d}\tau=\int_{t_0}^{t}{e}^{-A\tau}Bu{(\tau)} \mathrm{d}\tau\] \[e^{-At}x(t)-e^{-At_0}x(t_0)=\int_{t_0}^{t}{e}^{-A\tau}Bu{(\tau)} \mathrm{d}\tau\] \[\implies x(t)=e^{A(t-t_0)}x(t_0)+\int^{t}_{t_0}e^{A(t-\tau)}Bu(\tau)d\tau\]$\frac{d(f(t)g(t))}{dt}=\dot{f}(t)g(t)+f(t)\dot{g}(t)$
Reference
- 控制之美(卷2)—最优化控制MPC与卡尔曼滤波器, 王天威, 黄军魁, 清华大学出版社
- MATLAB/Simulinkによる制御工学入門, 川田昌克, 森北出版
- Feedback control of dynamic systems, Gene F. Franklin, J. David Powell, Abbas Emami-Naeini, Seventh Edition
This post is licensed under CC BY 4.0 by the author.